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Abstract 

Background Together with rapid urbanization, ambient nitrogen dioxide  (NO2) exposure has become a growing 
health threat. However, little is known about the urban–rural disparities in the health implications of short-term  NO2 
exposure. This study aimed to compare the association between short-term  NO2 exposure and hospitalization for car-
diovascular disease (CVD) among urban and rural residents in Shandong Province, China. Then, this study further 
explored the urban–rural disparities in the economic burden attributed to  NO2 and the explanation for the disparities.

Methods Daily hospitalization data were obtained from an electronic medical records dataset covering a population 
of 5 million. In total, 303,217 hospital admissions for CVD were analyzed. A three-stage time-series analytic approach 
was used to estimate the county-level association and the attributed economic burden.

Results For every 10-μg/m3 increase in  NO2 concentrations, this study observed a significant percentage increase 
in hospital admissions on the day of exposure of 1.42% (95% CI 0.92 to 1.92%) for CVD. The effect size was slightly 
higher in urban areas, while the urban–rural difference was not significant. However, a more pronounced displace-
ment phenomenon was found in rural areas, and the economic burden attributed to  NO2 was significantly higher 
in urban areas. At an annual average  NO2 concentration of 10 μg/m3, total hospital days and expenses in urban areas 
were reduced by 81,801 (44,831 to 118,191) days and 60,121 (33,002 to 86,729) thousand CNY, respectively, almost 
twice as much as in rural areas. Due to disadvantages in socioeconomic status and medical resources, despite similar 
air pollution levels in the urban and rural areas of our sample sites, the rural population tended to spend less on hos-
pitalization services.

Conclusions Short-term exposure to ambient  NO2 could lead to considerable health impacts in either urban or rural 
areas of Shandong Province, China. Moreover, urban–rural differences in socioeconomic status and medical resources 
contributed to the urban–rural disparities in the economic burden attributed to  NO2 exposure. The health implica-
tions of  NO2 exposure are a social problem in addition to an environmental problem. Thus, this study suggests a coor-
dinated intervention system that targets environmental and social inequality factors simultaneously.
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Introduction
Under the circumstances of rapid urbanization, ambient 
nitrogen dioxide  (NO2) exposure has become a growing 
health threat in China [1]. The combined pace of eco-
nomic growth and urbanization has led to tremendous 
increases in energy consumption. Consequently,  NO2 is 
a major ambient pollutant [2]. Ambient  NO2 exposure is 
considered to lead to cardiovascular disease (CVD) via 
dozens of molecular alterations, including but not limited 
to systemic inflammation, oxidative stress, endothelial 
dysfunction, coagulation, lipid metabolism, and vascular 
smooth muscle cell proliferation [3]. A series of epide-
miological studies have linked short-term  NO2 exposure 
to various CVD risks, such as hypertension, coronary 
heart disease, stroke, arrhythmia, and dyslipidemia 
[4–8]. Notably, the urban–rural disparities in CVD inci-
dence and morbidity are prominent in China. The most 
recent national survey revealed that the prevalence rates 
of CVD among rural and urban residents were 139.3 ‰ 
and 168.0 ‰, respectively, while the mortality rates were 
323.29 and 277.92 per 100,000 rural and urban residents, 
respectively, and the mortality rate from CVD in rural 
regions had consistently surpassed and remained higher 
than that in urban areas since 2009. Thus, the extent to 
which short-term  NO2 exposure may lead to disparities 
should be determined.

Due to the difficulty in obtaining air pollution data 
and resident health data in rural areas, most studies on 
the health implications of  NO2 have been carried out in 
urban areas. Only a few studies have compared the asso-
ciation of  NO2 with CVD risk between urban and rural 
areas, and the available results are mixed. A study iden-
tified that the health risks from short-term  NO2 expo-
sure increased with the urbanization process based on 
data from the Pearl River Delta region [9]. A compara-
tive study of urban and rural areas in Guangxi Province, 
China, also suggested that the effects of  NO2 on CVD 
hospitalizations were not significant in rural areas, 
whereas urban residents were significantly and negatively 
affected by  NO2 exposure [10]. In contrast, Li et al. found 
that rural residents were more sensitive to short-term 
 NO2 exposure than urban residents in terms of CVD 
mortality, but the differences were not significant [11]. 
Thus, additional research is warranted to better under-
stand the urban–rural disparities in this association.

Social inequality between urban and rural residents 
may further contribute to urban–rural disparities in the 
association of nitrogen dioxide exposure with CVD risk 

in terms of effect size and economic burden. Although 
rural–urban differences in access to basic health care 
have narrowed in China, access to high-quality health 
care services persist due to dramatic urban–rural differ-
ences in socioeconomic status. Rural residents usually 
have limited access to high-quality health care services, 
which may cause delayed and even reduced treatment 
of CVD attributed to short-term  NO2 exposure. Com-
pared to their urban counterparts, the rural population 
ranks lower in socioeconomic status [12], which fur-
ther constrains rural residents in affording high-quality 
health care and leads to urban–rural disparities in the 
economic burden attributed to  NO2 exposure. As Mohai 
et al. reported, environmental health issues are not only 
an environmental problem but also connected to social 
inequality [13]. More studies are also needed to corrobo-
rate the extent to which to what extent social inequality 
in socioeconomic status and access to health care may 
influence the urban–rural disparities in the effects of 
 NO2 exposure.

Therefore, the objective of this study was to compare 
the association between short-term  NO2 exposure and 
hospitalization for CVD among urban and rural residents 
in Shandong Province, China. Then, this study further 
explored the urban–rural disparities in the economic 
burden attributed to  NO2 and the potential explanations 
from the perspective of social inequalities. To our knowl-
edge, this is the first study to assess the urban–rural 
disparities in the economic burden attributed to  NO2 
exposure. A better understanding of the urban–rural dis-
parities in short-term  NO2-related health risks is of great 
importance for effective and timely decision-making 
in designing spatially targeted health interventions and 
developing  NO2-resilient health systems. Furthermore, 
this study provides evidence to effectively allocate urban 
and rural medical resources from the perspectives of 
environmental justice and social equality.

Chinese urban–rural background
China has experienced rapid urbanization in the past 
five decades, which took approximately a hundred years 
for Western societies [14]. Along with the urbanization 
process, urban–rural health and social disparities are 
becoming dramatic [15]. These disparities are rooted in 
development patterns and policy systems [16]. In the 
process of urbanization beginning in the 1970s, a series 
of urban-biased policies were implemented in China to 
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invest resources in urban areas, contributing to rapid 
development in these areas [17]. However, the urban con-
trol and exploitation of rural areas have led to the decline 
of rural areas and the formation of an urban–rural 
dual structure in terms of economic levels and access 
to welfare [15]. For example, the per capita disposable 
income of urban residents increased from CNY 343.4 
in 1978 to CNY 6280.0 in 2000, while that of rural resi-
dents increased from CNY 133.6 to CNY 2253.4 during 
the same period [18]. Moreover, medical resources are 
mostly concentrated in urban areas. In 2000, the num-
bers of health technicians and beds per thousand people 
in rural areas were 2.41 and 1.50, respectively. The num-
bers of health technicians and beds in urban areas were 
2.15 and 2.33 times those in rural areas, respectively [18]. 
However, air quality was much better in rural areas due 
to the slow industrialization process in this period [19].

Since 2000, urban–rural relations and the dependence 
of urban areas on rural areas have begun to change [14]. 
New types of urbanization and rural revitalization strat-
egies have been put forward in succession, and urban 
and rural areas have exhibited a new trend of integrated 
development. Specifically, in rural areas, targeted poverty 
alleviation aims to lift all destitute households out of pov-
erty and underdevelopment. Then, the Beautiful Coun-
tryside Plan can allow the improvement of infrastructure 
and social welfare in rural areas. Specifically, China has 
endeavored to achieve universal health coverage (UHC) 
and grant access for every citizen to equitable, accessi-
ble, and reliable health services and protection. To ensure 
that urban and rural residents enjoy equal access to basic 
medical care, China has established a medical security 
system covering 1.3 billion people, with a participation 
rate of over 95% [20]. Combined with the reform of pub-
lic hospitals, a hierarchical medical system, the develop-
ment of contracts with family doctors, and the basic drug 
system, China’s health care reform has achieved popula-
tion coverage, service coverage, and cost coverage, which 
are the three dimensions of UHC realization [21].

However, due to industrialization and solid fuel emis-
sions, air pollution is becoming a major problem in a 
growing number of rural areas. Moreover, the imbal-
ance between rural and urban development continues to 
be prominent in many provinces [22]. Urban areas usu-
ally hold an advantage in socioeconomic status. Accord-
ing to the 2021 yearbook [23], the per capita disposable 
income of urban and rural residents was CNY 43833.8 
and CNY 17131.5 in 2020, respectively. In addition to 
income inequality, urban–rural health inequality remains 
problematic. Despite similar access to basic medical care, 
high-quality health care resources are distributed mostly 
in urban areas [24, 25]. Compared with urban residents, 
the utilization of health services and annual health and 

hospitalization expenses are poorer for rural residents 
[12]. A higher mortality rate attributed to CVD has been 
documented in rural areas despite of a lower prevalence 
of CVD risk. Notably, spatial differences are dramatic 
in terms of urban–rural characteristics. For example, 
urban–rural differences in the  NO2 annual average con-
centration exhibit a great gap in Chongqing and Guangxi 
but not in Shandong or Beijing [26]. A similar phenom-
enon was found regarding socioeconomic status and 
access to health care. Residents in rural areas of Guang-
dong and Hainan provinces are entitled to equal and even 
better health care than the average level. Thus, represent-
ative quantitative evidence is needed to reveal the asso-
ciations between  NO2 exposure and CVD risk in urban 
and rural areas.

Methods
Study population
This study derived data from the Cheeloo Lifespan Elec-
tronic Health Research Data Library (Cheeloo LEAD) 
using a three-stage cluster random sampling method. 
Cohorts from 39 counties were obtained, totaling 5 mil-
lion individuals, sampled from 136 counties in Shandong 
Province, which has a total population of 101 million. 
The specific sampling process and the demographic 
characteristics of this population are provided in Sup-
plementary Materials Fig. S1. A more detailed descrip-
tion of the study design and sampling procedure can be 
found at http:// www. mhdata. sdu. edu. cn/ cheel oolead. 
htm and in previously published studies [27–29]. Urban 
and rural areas are delineated based on the urban–rural 
categorization code established by the National Bureau 
of Statistics of China in 2015 (http:// www. stats. gov. cn/ 
sj/ tjbz/ qhdm/). This classification code comprises three 
numbers, where the initial digit being 1 indicates an 
urban area, and a first digit of 2 signifies a rural area. The 
39 county-level units included 21 rural counties and 19 
urban counties. The county names, county codes, and 
sample sizes of the sampled counties are shown in Table 
S1. Of them, Tengzhou city included an urban county 
and a rural county; thus, there were 39 county-level units.

CVD hospital admission identification
Electronic medical records and medical insurance data 
were extracted for the sampled residents, and individual 
identification numbers and admission times were used 
as indexes to merge the information from the two data 
set. The essential hospital records of the study popula-
tion included the names and codes of the discharge diag-
nosis, the length of hospitalization, and the names and 
expenses of prescriptions during hospitalization. A total 
of 1.7 million hospitalizations were extracted. Among 
them, 336,621 hospitalizations for CVD were screened 

http://www.mhdata.sdu.edu.cn/cheeloolead.htm
http://www.mhdata.sdu.edu.cn/cheeloolead.htm
http://www.stats.gov.cn/sj/tjbz/qhdm/
http://www.stats.gov.cn/sj/tjbz/qhdm/
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according to International Statistical Classification of 
Diseases and Related Health Problems, 10th Revision 
(ICD-10) codes. After excluding a portion of missing data 
points, the final sample size was 303,127. Subsamples 
were further screened according to the ICD-10 (coronary 
heart disease: I20-I25; ischemic stroke: I63; hyperten-
sion: I10-I12). For a specific disease in a specific county 
on a given day, the county-level hospital admissions 
were obtained by summing the total number of hospital 
admissions on that day from the sampled population of 

that county. When calculating attributable hospital days 
and the burden of hospitalization costs, the total was 
derived by multiplying the average expenses and average 
length of stay for all admissions in a specific county dur-
ing the study period by the attributable number of admis-
sions for that county.

Air pollution and meteorological data
Daily ambient  NO2, particulate matter with an aero-
dynamic diameter of 2.5 μm or less  (PM2.5), particulate 
matter with an aerodynamic diameter of 10 μm or less 
 (PM10), sulfur dioxide  (SO2), carbon monoxide (CO) and 
ozone  (O3) data covering Shandong Province from 2015 
to 2017 at a spatial resolution of 0.1° (≈10  km2) were col-
lected from ChinaHighAirPollutants (CHAP, available 
at https:// weiji ng- rs. github. io/ produ ct. html). These data 
are estimated by a space-time extremely randomized tree 
(STET) model. This model was developed to integrate 
satellite remote sensing products, atmospheric reanaly-
sis, and ground-based measurements to complete model 
simulations. The pollutant estimations were reliable since 
they exhibited high  R2 values of 0.80–0.91, with reference 
to surface observations obtained by adopting the inde-
pendent 10-fold cross-validation approach. County-level 
data were extracted by averaging the grid values.

The daily mean temperature and relative humidity were 
based on the daily source data from a total of 131 meteoro-
logical monitoring stations in Shandong and adjacent prov-
inces from the China Meteorological Data Sharing Service 
(http:// data. cma. cn/). A thin-plate smooth spline function, 
with longitude and latitude as independent spline variables 
and elevation as a covariate considered in the function, was 
applied to interpolate the daily mean temperature and rela-
tive humidity grid at 0.01° * 0.01° resolution for the whole of 
Shandong Province from 2015 to 2017. County-level data 
were extracted by averaging the grid values.

Statistical analysis
Effect size and economic burden estimation
A three-stage time series design was used to estimate 
the association of short-term  NO2 exposure with car-
diovascular disease, coronary heart disease, stroke, and 
hypertension and the corresponding attributable hospital 
admissions, hospital days, and total hospital expenses.

In the first stage, a time series of a quasi-Poisson gener-
alized linear regression model allowing for overdispersed 
admission counts was used to estimate county-specific 
associations [30].

In the model, several confounding covariates were 
incorporated, including daily mean temperature, relative 
humidity, calendar time, holiday, and day of the week, 
which were predefined according to previously published 
studies [31, 32]. In the equation, E(Yt) is the expected 
count of admissions in the analyzed county on day t, 
and β(NO2) is the log relative risk of hospital admissions 
associated with a 10-μg/m3 increase in  NO2. Following 
Tian et al., the day of the week and holiday are the indica-
tor variables to account for possible differences between 
weekdays and weekends and holidays and nonholidays. 
Previous studies have found variations in healthcare ser-
vice utilization between weekdays and weekends [33], 
holidays and non-holidays [34]. In Chinese cultural 
context, people prefer not to receive health services on 
holidays (such as Spring Festival and Mid-Autumn Fes-
tival, which are usual days for family reunion). Moreo-
ver, in China, there could be overlap between the two 
variables, but few days on both holidays and weekends. 
ns (temperature) and ns (relative humidity) are natural 
cubic splines with 6 df for the 3-day moving average tem-
perature and 3 df for the 3-day moving average relative 
humidity to adjust for potential lag and nonlinear effects 
effect of temperature and relative humidity; ns (calendar 
time) is a natural cubic spline function of time with seven 
degrees of freedom (df ) per year to adjust for seasonality 
and time trends. Confounding effects of time-invariant 
or slowly varying risk factors at the individual level (e.g., 
sex, age, and comorbidities) could be naturally controlled 
for in the model [32].

This study modeled the association between  NO2 and 
hospital admissions using a distributed lag model with 
a linear lag response function, inspecting the lag struc-
ture on a single lag day of 0 to 4 and moving average of 
the present and previous days (lag 0–4), respectively, 
to identify the optimal lag choices. In this model, lag 0 

(1)
Log(E(Yt)) = α + β(NO2)+ Day of the week +Holiday+ ns calendar time, df = 7 per year

+ ns temperature, df = 6 + ns relative humidity, df = 3

https://weijing-rs.github.io/product.html
http://data.cma.cn/


Page 5 of 15Zhang et al. International Journal for Equity in Health           (2024) 23:22  

corresponded to the present day, lag 1 to the previous 
day, lag 2 to the day before lag 1, lag 3 to the day before 
lag 2, and lag 0–1 represented the two-day moving aver-
age of the present and previous day. The single-day and 
cumulative exposure effects were calculated based on 
exposures defined by these two different lag structures, 
and the estimated cumulative exposure effect was simi-
lar to the sum of the coefficients for single-day exposure 
effects in the distributed lag model [35].

In the second stage, random effects meta-analyses were 
applied to pool the county-specific associations to obtain 
urban, rural and overall estimates [36, 37]. The associa-
tions were calculated and expressed as the percentage 
change (95% CI) for each  NO2 increase of 10 μg/m3.

A two-sample test was implemented to assess statisti-
cally significant differences in the estimates (E) between 
urban and rural areas based on the point estimate and 
standard error (SE) [38].

In the third stage, the urban and rural effect estimates 
from the second stage were used to calculate the attrib-
utable number (AN) and attributable fraction (AF) [39] 
corresponding to the reduction in hospital admissions, 
length of hospital stays and total hospital expenses at 
the optimal lag choice period when  NO2 concentrations 
reached the 2005 World Health Organization Global Air 
Quality Guidelines (WHO 2005 AQG) and WHO 2021 
AQG, respectively.

where  ANic is the county-specific attributable number 
of hospital admissions;  Nic is the annual total hospi-
tal admissions in year i for urban or rural county c; β is 
the coefficient derived from the second stage; Dic is the 
annual average concentration of  NO2 in year i for county 
c; and AQG is the World Health Organization Air Qual-
ity Guidelines annual average concentration of  NO2, 
which is 40 μg/m3 for the WHO 2005 AQG and 10 μg/m3 
for the WHO 2021 AQG. Total AN is summed by  ANic. 
AF is calculated by dividing the AN by the sum of Nic.

(2)RR = eβ

(3)Percentage change (%) = (RR− 1) ∗ 100

(4)Z =
Eurban − Erural

√

SE(Eurban)
2
+ SE(Erural)

2

(5)

ANic = Nic ∗
RRic − 1

RRic
,with RRic = e

(

β∗
Dic−AQG

10

)

In addition, the AFs and ANs of total hospital stays 
and expenses were estimated using the following for-
mula [40, 41]:

where ANec and ANdc are the county-specific attrib-
utable number of hospital expenses and hospital stays, 
respectively.  ANic is the AN of hospital admissions for 
county c during the study period. AEc and ADc are the 
average expenses and average length of stay for all admis-
sions in county c during the study period. AF was calcu-
lated by dividing the AN by the sum of the total expenses.

Potential reasons for urban–rural disparities
Finally, meta-regression models with county-level social 
characteristics (such as access to health care and GDP 
per capita) as independent variables were employed to 
check the role of social inequality in the urban–rural 
association. County-level association estimation could 
not adjust for individual-level risk factors for CVD, such 
as lifestyle factors and obesity. Instead, given the relation-
ship of GDP with lifestyle and obesity, we attempted to 
explore the role of economic development in the asso-
ciation between  NO2 exposure and CVD risk at lag day 
of 0. These methods expanded into multivariate meta-
regression models with specific predictors to explain the 
potential heterogeneity, representing a refined param-
eterization within the linear mixed effects meta-analytic 
framework [42].

Moreover, health service utilization between rural and 
urban residents was compared to explore the potential 
explanation for urban–rural disparities in the economic 
burden attributed to  NO2 exposure. In addition, this 
study followed up on the death outcome of the partici-
pants up to October 2020, and the survival curve of CVD 
between urban and rural residents was evaluated using 
Kaplan–Meier curves [43].

Sensitivity analysis
Since older people are less likely to move between rural 
and urban areas, the association among older people 
was also evaluated to reduce the bias resulting from the 
dynamic movement of citizens between rural and urban 
areas. In addition, five other co-pollutants  (PM10,  PM2.5, 
 SO2, CO, and  O3) were added to fit the two-pollutant 
model. By doing so, this study could determine the inde-
pendent effects of short-term exposure to  NO2 on CVD 
admissions. Based on previous studies, the association 
between short-term exposure to  NO2 and increased risk 
of hospitalization for CVD was assumed to be linear in 

(6)
ANec = AEc ∗

∑

ANic,ANdc = ADc ∗
∑

ANic
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the main model [7, 44]. To explore the potential nonlin-
ear correlation,  NO2 was adjusted for using natural cubic 
splines, two knots were set at concentrations of 20 μg/m3 
and 40 μg/m3, and the meta-smoothing method was used 
to summarize the concentration–response relationship 
curves.

All statistical analyses were conducted in R software 
(version 4.2.0) using the tsModel and dlnm packages for 
fitting first-stage models, the mixmeta package for per-
forming meta-analyses, and the survminer package for 
performing survival analysis.

Results
Descriptive statistics
Table  1 shows the summary statistics for total hospital 
admissions, lengths of stay, and total expenses for each 
estimated disease during the study period in both urban 
and rural areas. Among the 303,217 hospital admissions 
for CVD, coronary heart disease had the largest number 
of hospital admissions in total (85,168) and urban areas 
(50,487), while ischemic stroke had the largest number of 
hospital admissions in rural areas (37,276). The total hos-
pital stays and hospital expenses reached 4,302,498 days 
and 2,750,867 CNY for CVD, respectively. In urban 
areas, the total number of hospital days (3,032,005 days) 
and hospital costs (175,769 thousand CNY) for CVD 
were higher than those in rural areas (127,493 days and 
1,000,098 thousand CNY).

Table 2 shows the statistical description of  NO2 concen-
trations, temperature, and relative humidity in the study 
areas. The daily average  NO2 concentration during the 

study period was 36.1 μg/m3, which was slightly higher 
in urban areas (37.2 μg/m3) than in rural areas (35.1 μg/
m3). The daily average concentration of  NO2 ranged from 
14.74 to 93.78 μg/m3 in urban areas. This value ranged 
from 14.49 to 87.00 μg/m3 in rural areas. Figure 1 displays 
the geographical distribution of the sampled urban and 
rural areas within Shandong Province, along with the 
distribution of average  NO2 concentrations. This shows 
that the distribution of the sampling points was quite 
dispersed. In addition, ambient  NO2 pollution intensi-
fied from east to west, a pattern that is consistent with 

Table 1 Characteristics of hospital admission cases in the 
included Shandong counties

Abbreviation: CNY Chinese yuan

Disease Total Urban Rural

Hospital admissions (cases)
    Cardiovascular disease 303,217 160,652 142,565

    Coronary heart disease 85,168 50,487 34,681

    Ischemic stroke 68,078 30,802 37,276

    Hypertension 45,149 27,054 18,095

Total hospital stays (days)
    Cardiovascular disease 4,302,498 3,032,005 1,270,493

    Coronary heart disease 895,039 618,506 276,533

    Ischemic stroke 844,794 473,765 371,029

    Hypertension 767,184 628,622 138,562

Total expenses (thousand CNY)
    Cardiovascular disease 2,750,867 1,750,769 1,000,098

    Coronary heart disease 872,259 607,536 264,723

    Ischemic stroke 553,455 320,728 232,727

    Hypertension 235,917 177,565 5835

Table 2 Description of daily air pollutant concentrations, temperature 
and relative humidity in the included Shandong counties

Abbreviations: NO2 nitrogen dioxide, PM2.5 particulate matter with an 
aerodynamic diameter of 2.5 μm or less, PM10 particulate matter with an 
aerodynamic diameter of 10 μm or less, CO carbon monoxide, O3 ozone, SO2 
sulfur dioxide, SD standard deviation, P25 25th percentile, P75 75th percentile

Mean (SD) Median (P25, P75)

NO2 (μg/m3)
    Total 36.12 (15.97) 33.39 (24.61, 45.00)

    Urban 37.20 (16.36) 34.31 (25.25, 46.21)

    Rural 35.14 (15.40) 32.57 (24.12, 43.75)

PM2.5 (μg/m3)
    Total 63.31 (39.83) 53.47 (36.77, 77.93)

    Urban 64.58 (41.24) 54.31 (37.26, 79.52)

    Rural 62.47 (38.44) 53.03 (36.71, 76.87)

PM10 (μg/m3)
    Total 112.27 (57.95) 101.72 (72.05, 137.38)

    Urban 115.23 (60.42) 103.84 (73.51, 141.51)

    Rural 109.99 (55.33) 100.30 (71.15, 134.49)

CO (μg/m3)
    Total 1.19 (0.59) 1.09 (0.81, 1.43)

    Urban 1.21 (0.62) 1.10 (0.81, 1.45)

    Rural 1.17 (0.56) 1.08 (0.81, 1.40)

O3 (μg/m3)
Total 82.52 (99.46) 91.35 (54.91, 132.29)

Urban 81.48 (105.02) 90.50 (53.54, 131.89)

Rural 84.72 (92.30) 92.84 (56.85, 133.19)

SO2 (μg/m3)
    Total 33.16 (22.34) 27.62 (16.92, 43.42)

    Urban 33.63 (23.33) 27.58 (16.92, 43.66)

    Rural 33.09 (21.32) 28.08 (17.35, 43.77)

Temperature (°C)
    Total 14.83 (10.01) 16.66 (5.6, 23.53)

    Urban 14.87 (10.04) 16.74 (5.61, 23.60)

    Rural 14.83 (9.98) 16.62 (5.65, 23.50)

Relative humidity (%)
    Total 65.83 (16.24) 66.84 (53.41, 79.02)

    Urban 65.71 (16.29) 66.72 (53.24, 79.11)

    Rural 66.12 (16.14) 67.14 (53.87, 79.12)
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the distribution characteristics observed across China. 
Among our sample sites, daily  NO2 concentrations were 
similar in urban and adjacent rural areas of coastal cities 
such as Qingdao, Yantai, and Weihai, whereas compared 
to adjacent rural areas, the air pollution levels of urban 
areas were obviously higher in some inland cities such as 
Jinan, Zaozhuang and Linyi. Furthermore, county-level 
hospital admissions, along with air pollution levels, soci-
oeconomic factors, and health care resource indicators, 
are shown in Table S2. Overall, GDP per capita and num-
ber of beds per thousand people were higher in urban 
areas.

Associations between  NO2 exposure and hospital 
admissions for CVD
Figure  2    shows the total, urban, and rural estimates of 
the associations between  NO2 and hospital admissions 
for CVD as well as coronary heart disease, ischemic dis-
ease, and hypertension on different lag days (including 
single-day lags and cumulative lags from 0 to 4 days). For 
the total effect estimates, a similar lagged pattern, namely, 
a significant and almost highest estimate at lag 0, was 
exhibited for total CVD and for the other three cause-
specific diseases. For a 10-μg/m3 increase in  NO2 con-
centrations, this study observed a significant percentage 

increase in hospital admissions on the day of exposure of 
1.42% (95% confidence interval 0.92 to 1.92%) for CVD, 
1.47% (0.59 to 2.35%) for coronary heart disease, 1.57% 
(0.64 to 2.51%) for ischemic stroke, and 2.54% (1.21 to 
3.88%) for hypertension. However, as the lag day length 
increased, the single-day effect of cardiovascular disease 
began to show a protective effect, and the cumulative 
effect gradually decreased and was no longer significant. 
This is referred to as the ‘displacement’ phenomenon by 
Schwartz [45].

Urban–rural disparities in the association between  NO2 
exposure and hospital admissions for CVD
The comparison of the urban and rural estimates is 
shown in Fig.  2(b). Separate estimates in urban and 
rural areas also suggested a significant effect on hospital 
admissions for CVD at lag 0, with 1.51% (0.82 to 2.21%) 
and 1.34% (0.58 to 2.10%), respectively. The estimated 
effects were nonsignificantly different for urban and rural 
counties (Table 3) at lag 0 (P value = 0.738). Similarly, the 
‘displacement’ phenomenon was observed in the urban 
and rural estimates. Nevertheless, a more pronounced 
displacement phenomenon was found in rural areas, 
with a statistically significant difference (urban vs. rural: 
1.43% (0.26 to 2.62%) vs. − 0.52% (− 1.89 to 0.88%), P 

Fig. 1 The distribution of 39 Shandong counties and their average nitrogen dioxide concentrations
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value = 0.035). In addition, the results for the three cause-
specific CVDs differed between urban and rural areas. 
For a 10-μg/m3 increase in  NO2 concentrations, there 
was a significant percentage increase in hospital admis-
sions on the day of exposure of 1.92% (0.56 to 3.29%) for 
ischemic stroke and 2.49% (0.50 to 4.53%) for hyperten-
sion among urban residents, while there was a significant 
increase of 2.18% (0.86 to 3.51%) for coronary heart dis-
ease and 2.45% (0.61 to 4.32%) for hypertension among 
rural residents.

The pooled concentration–response curve (Fig. S2) 
for the association between  NO2 and hospital admis-
sions showed positive and nearly linear concentration–
response curves, with no discernible thresholds. In the 
sensitivity analysis, models with two pollutants were 
used. The associations of  NO2 with total and cause-
specific CVDs were still robust after adjustment for co-
pollutants (Table  4). However, the effect size of  NO2 
increased slightly after adjustment for  PM2.5,  PM10, 
 SO2,  O3 and CO. Fig. S3 shows the comparison between 
the results of subsample analysis in the aging population 
(aged above 60, n = 214,792) and of all study subjects. 
Since older people are less likely to move between rural 

and urban areas, the results for the total population were 
very similar to those in the aging population, suggesting 
that the dynamic movement of citizens between rural 
and urban areas did not bias our estimations.

Economic burden attributed to  NO2 exposure in terms 
of CVD
Table 5 shows the AFs and ANs of hospital admissions, 
total hospital days, and total expenses that could be 
reduced if annual  NO2 concentrations reached the WHO 
2021 AQG. By doing so, this study could reflect the dis-
ease burden and economic burden of CVD caused by 
 NO2. At an annual average  NO2 concentration of 10 μg/
m3 (WHO 2021 AQG), the reduced AN of CVD hospital 
admissions would be 5447 (2990 to 7859) in urban areas, 
with an AF of 3.39% (1.86 to 4.89%). The results in rural 
areas were very similar to those in urban areas, with AN 
and AF values of 4765 (2099 to 7376) and 3.34 (1.47 to 
5.17), respectively. However, there were apparent urban–
rural differences in length of stay and hospital expenses. 
Total hospital days and expenses in urban areas would be 
reduced by 81,801 (44,831 to 118,191) days and 60,121 
(33,002 to 86,729) thousand CNY, respectively, almost 

Fig. 2 Percentage increase in cardiovascular disease, coronary heart disease, ischemic stroke, and hypertension hospital admissions per 10-μg/
m3 increase in short-term ambient nitrogen dioxide exposure for overall (a) rural and urban counties (b). Note: The results were controlled 
for risk factors, including daily mean temperature, relative humidity, calendar time, public holidays, and day of the week. A distributed lag model 
was applied to estimate the county-specific associations, while random effects meta-analyses were used to pool the county-specific associations. 
Lag 0 corresponded to the present day, lag 1 to the previous day, lag 2 to the day before lag 1, lag 3 to the day before lag 2, and lag 0–1 represented 
the two-day moving average of the present and previous day
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twice as much as in rural areas, with 42,131 (18,562 to 
65,212) days and 32,875 (14,483 to 50,886) thousand 
CNY, respectively. Hypertension showed similar results: 
the burden of disease in urban areas was similar to that 
in rural areas, but the economic burden was almost twice 
as high. The previous WHO 2005 AQG standard set an 
annual average value of 40 μg/m3 for  NO2, and this study 
also calculated the ANs and AFs of hospital admissions, 
hospital days, and hospital expenses for this guideline 
in both urban and rural areas (Table S4). Since many of 
our study areas already met this level, this guideline value 
would have resulted in a smaller reduction in both the 
disease and economic burden from  NO2. The AN and AF 
were 327 (179 to 475) and 0.46% (0.25 to 0.66%) for hos-
pital admissions for CVD in urban areas and 185 (81 to 
289) and 0.26% (0.11 to 0.40%) in rural areas, respectively.

Exploration of the reasons behind urban–rural disparities
Table S3 shows the results of the meta-regression model 
adjusting for county-level access to health care and eco-
nomic development. The estimated heterogeneity  (I2) 
in the overall exposure–response associations for CVD 
hospital admissions at lag day of 0 between counties was 

13.8%. Adding the GDP per capita and hospital beds per 
thousand people indicators to the model increased the 
model’s heterogeneity to 16.0% and decreased it to 12.8% 
respectively, with the P values of the coefficient estimates 
not being significant. The results suggest that the associa-
tion between  NO2 exposure and CVD risks at lag day of 
0, when the effects are most pronounced, was not shaped 
by access to health care or economic development.

However, urban–rural differences in access to health 
care contributed to urban–rural disparities in the eco-
nomic burden attributed to  NO2 exposure. Table  6 
displays the comparison of health service utilization 
between rural and urban residents. Rural residents 
tended to receive health care services in primary and 
secondary institutions and spent less per admission. In 
this study, 34.05 and 33.88% of rural patients received 
treatment in primary and secondary medical institu-
tions, respectively, compared with 19.30 and 25.98% of 
urban patients. On average, total expenses per admis-
sion were lower among rural residents (urban vs. rural: 
6826 CNY vs. 3854 CNY); when stratified by facility level, 
the differences became significantly smaller. Usually, ter-
tiary institutions are more likely to provide high-quality 
health services, with a higher expense [46]. Thus, the 
urban–rural disparities in the economic burden attrib-
uted to  NO2 exposure might be due to differences in 
access to high-quality health services between urban and 
rural residents. This study further tracked the mortal-
ity outcomes to support that urban residents had a high 
access to high-quality health services. The mortality out-
comes of the study subjects was tracked until October 
2020, and the Kaplan–Meier survival curve showed that 
there was a significant difference in the CVD survival 
time between urban and rural residents (Fig.  3). Urban 
residents showed a higher CVD survival probability, sug-
gesting urban residents had a high access to high-quality 
health services. Since urban-rural difference in access 
to health services contributed to urban–rural dispari-
ties in the economic burden attributed to  NO2 exposure, 
urban–rural disparities in the effects of  NO2 exposure are 
a social problem in addition to environmental justice.

Discussion
The association between short‑term  NO2 exposure 
and hospitalization for CVD
Based on data on 303,217 hospital admissions for CVD, 
this study estimated the urban–rural disparities in the 
association between short-term  NO2 exposure and hos-
pitalization for CVD in Shandong Province, China. As 
expected, this study found that  NO2 was positively and 
significantly associated with hospitalization for CVD. For 
every 10-μg/m3 increase in  NO2 concentrations, there 

Table 3 Percentage changes in hospital admissions associated 
with a 10-μg/m3 increase in  NO2 on lag 0 days and lag 04 days

* The p values were for difference tests in the associations between urban and 
rural areas

Lag 0 corresponded to the present day, and lag 0–4 represented the four-day 
moving average of the present and previous day

Percentage change in % (95% CI)

Lag 0 Lag 04

Cardiovascular disease
    Total 1.42 (0.92, 1.92) 0.50 (−0.47, 1.49)

    Urban 1.51 (0.82, 2.21) 1.43 (0.26, 2.62)

    Rural 1.34 (0.58, 2.10) −0.52 (−1.89, 0.88)

    p* 0.738 0.035

Coronary heart disease
    Total 1.47 (0.59, 2.35) 0.98 (−0.67, 2.65)

    Urban 0.97 (−0.11, 2.07) 2.05 (− 0.13, 4.28)

    Rural 2.18 (0.86, 3.51) −0.46 (−2.66, 1.79)

    p* 0.169 0.116

Ischemic stroke
    Total 1.57 (0.64, 2.51) 1.68 (0.08, 3.29)

    Urban 1.92 (0.56, 3.29) 2.22 (−0.08, 4.59)

    Rural 1.22 (−0.11, 2.57) 1.19 (−1.00, 3.42)

    p* 0.477 0.527

Hypertension
    Total 2.54 (1.21, 3.88) 0.46 (−1.97, 2.94)

    Urban 2.49 (0.50, 4.53) 0.11 (−3.71, 4.08)

    Rural 2.45 (0.61, 4.32) 0.41 (−2.69, 3.61)

    p* 0.973 0.907
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were significant percentage increases in hospital admis-
sions on the day of exposure of 1.42% (95% confidence 
interval 0.92 to 1.92%) for CVD, 1.47% (0.59 to 2.35%) 
for coronary heart disease, 1.57% (0.64 to 2.51%) for 
ischemic stroke, and 2.54% (1.21 to 3.88%) for hyperten-
sion. The estimations were on par with those of studies 
conducted in China [4, 6, 47–49] but greater than those 
in a global meta-analysis [8]. The meta-analysis revealed 
that a 10-μg/m3 increase in 24-h  NO2 exposure was 
associated with a 0.66% (0.32 to 1.01%) increase in CVD 
hospital admissions. Nevertheless, the meta-analysis 
included 204 studies up to 2011, of which there were only 
2 studies from East Asia.

This study further conducted estimations on the 
economic burden attributed to  NO2 exposure. If the 
concentration of  NO2 could be reduced to the WHO 
2021 AQG standard (10 μg/m3), the AN of CVD hospi-
tal admissions that could be reduced would be 10,162 
(6638 to 13,637), with attributed hospital expenses of 

91,269 (59,627 to 122,479) thousand CNY. Compared 
to the WHO AQG for 2021, the reduced ANs and eco-
nomic burden according to the WHO AQG for 2005 
were obviously smaller. This could be because more 
than half of our sample sites met the WHO 2005 AQG 
criteria. In 2017, there were only three counties that 
did not meet the criteria. However, our study contin-
ued to observe the health hazards resulting from  NO2 
exposure, which justifies the importance of the WHO 
2021 AQG.

Urban–rural disparities in the association 
between short‑term  NO2 exposure and CVD hospital 
admissions
Separate estimations for urban and rural areas also sug-
gested a significant effect of short-term  NO2 exposure 
on CVD hospital admissions. A 10-μg/m3 increase in 
24-h  NO2 exposure was associated with 1.51% (0.82 
to 2.21%) and 1.34% (0.58 to 2.10%) increases in CVD 

Table 4 Percentage changes in cardiovascular disease, coronary heart disease, ischemic stroke, and hypertension hospital admissions 
associated with a 10-μg/m3 increase in  NO2 on lag 0 days, with and without adjustment for co-pollutants

Abbreviations: PM2.5 particulate matter with an aerodynamic diameter of 2.5 μm or less, PM10 particulate matter with an aerodynamic diameter of 10 μm or less, CO 
carbon monoxide, O3 ozone, SO2 sulfur dioxide

Model Disease Percentage change in % (95% CI) Attributable 
fraction in % 
(95% CI)

Adjusting for PM2.5
Cardiovascular disease 2.20 (1.44, 2.96) 7.16 (4.78, 9.48)

Coronary heart disease 2.45 (1.21, 3.70) 8.10 (4.13, 11.89)

Ischemic stroke 1.79 (0.29, 3.31) 6.21 (1.04,11.10)

Hypertension 3.68 (1.50, 5.9) 10.82 (4.64, 16.57)

Adjusting for PM10
Cardiovascular disease 1.92 (1.27, 2.57) 6.29 (4.23, 8.29)

Coronary heart disease 2.25 (1.14, 3.36) 7.46 (3.90, 10.88)

Ischemic stroke 1.96 (0.78, 3.16) 6.80 (2.78, 10.65)

Hypertension 2.95 (1.02, 4.92) 8.83 (3.19, 14.11)

Adjusting for CO
Cardiovascular disease 2.20 (1.22, 3.19) 7.18 (4.08, 10.17)

Coronary heart disease 2.66 (1.36, 3.98) 8.77 (4.63, 12.72)

Ischemic stroke 1.11 (−0.61, 2.86) 3.91 (−2.25, 9.69)

Hypertension 4.90 (2.46, 7.40) 14.07 (7.44, 20.18)

Adjusting for O3
Cardiovascular disease 1.37 (0.86, 1.87) 4.54 (2.90, 6.14)

Coronary heart disease 1.41 (0.53, 2.29) 4.78 (1.85, 7.62)

Ischemic stroke 1.40 (0.46, 2.34) 4.90 (1.65, 8.03)

Hypertension 2.42 (1.05, 3.81) 7.30 (3.26, 11.17)

Adjusting for SO2

Cardiovascular disease 1.81 (1.06, 2.57) 5.95 (3.53, 8.31)

Coronary heart disease 1.89 (0.63, 3.16) 6.34 (2.19, 10.30)

Ischemic stroke 2.16 (0.77, 3.58) 7.45 (2.74, 11.93)

Hypertension 2.45 (0.28, 4.66) 7.40 (0.89, 13.44)
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hospital admissions in rural and urban areas, respec-
tively. However, the estimated effects were not signifi-
cantly different for urban and rural counties. The results 
were consistent with those of Li et al. [13], who assessed 
urban–rural disparities in Beijing. In addition, the results 
were in agreement with those of Lin et  al. [50] and Liu 
et al. [51], who compared the associations of short-term 
 PM2.5/ozone with mortality (total, CVD, CED, and RESP) 
between urban cities and rural areas in Jiangsu and all of 

China. Conversely, no associations were found between 
short-term  NO2 exposure and CVD mortality in urban 
or rural areas of Italy [52]. Moreover, a positive associa-
tion between  NO2 exposure and cardiovascular hospi-
talizations at lag 0 and lag 1 was found in urban areas 
of Guangxi Province [10], whereas the effect of  NO2 
was not significant in rural areas. The study populations 
had different urban–rural characteristics in terms of 
 NO2 exposure across studies, which may have led to the 

Table 5 Attributable numbers and fractions of hospital admissions, total hospital stays and total expenses (thousand CNY) that can be 
reduced when the annual  NO2 concentration reaches the WHO 2021 AQG

Abbreviations: CNY Chinese yuan, NO2 nitrogen dioxide, WHO 2021 AQG the 2021 World Health Organization Global Air Quality Guidelines, CI confidence interval

Attributable number (95% CI) Attributable fraction in % (95% CI)

Urban Rural Urban Rural

Cardiovascular disease
 Hospital admissions (case) 5447 (2990, 7859) 4765 (2099, 7376) 3.39 (1.86, 4.89) 3.34 (1.47, 5.17)

 Total hospital stays (days) 81,801 (44,831, 118,191) 42,131 (18,562, 65,212) 2.70 (1.48, 3.90) 3.32 (1.46, 5.13)

 Total expenses (thousand CNY) 60,121 (33,002, 86,729) 32,875 (14,483, 50,886) 3.43 (1.88, 4.95) 3.29 (1.45, 5.09)

Coronary heart disease
 Hospital admissions (case) 1171 (−133, 2434) 1893 (769, 2977) 2.32 (−0.26, 4.82) 5.46 (2.22, 8.58)

 Total hospital stays (days) 12,728 (−1444, 26,501) 15,019 (6098, 23,616) 2.06 (−0.23, 4.28) 5.43 (2.21, 8.54)

 Total expenses (thousand CNY) 13,950 (−1584, 29,011) 14,366 (5833, 22,592) 2.30 (−0.26, 4.78) 5.43 (2.20, 8.53)

Ischemic stroke
 Hospital admissions (case) 1449 (433, 2426) 1198 (−108, 2455) 4.70 (1.41, 7.88) 3.21 (−0.29, 6.59)

 Total hospital stays (days) 19,803 (5915, 33,202) 11,809 (−1064, 24,207) 4.18 (1.25, 7.01) 3.18 (−0.29, 6.52)

 Total expenses (thousand CNY) 14,575 (4357, 24,413) 7302 (− 658, 14,969) 4.54 (1.36, 7.61) 3.14 (−0.28, 6.43)

Hypertension
 Hospital admissions (case) 1272 (265, 2232) 1066 (274, 1819) 4.70 (0.98, 8.25) 5.89 (1.51, 10.05)

 Total hospital stays (days) 22,999 (4760, 40,576) 8104 (2083, 13,831) 3.66 (0.76, 6.45) 5.85 (1.5, 9.98)

 Total expenses (thousand CNY) 8435 (1756, 14,795) 3372 (867, 5756) 4.75 (0.99, 8.33) 5.78 (1.49, 9.86)

Table 6 Comparison of health service utilization between rural and urban residents

Abbreviation: CNY Chinese yuan

Urban Rural

Admissions (proportion%)
    Total 160,652 142,565

    Primary medical institutions 31,011 (19.30%) 48,539 (34.05%)

    Secondary medical institutions 41,736 (25.98%) 48,308 (33.88%)

    Tertiary medical institutions 78,544 (48.89%) 32,861 (23.05%)

Hospital expenses (CNY)
    Total medical institutions 6826.28 (3796.62, 11,124.45) 3854.51 (2205.00, 6782.75)

    Primary medical institutions 2652.20 (1547.23, 4395.18) 2290.60 (1559.78, 3232.86)

    Secondary medical institutions 6430.90 (4296.72, 9239.11) 5044.75 (3392.34, 7674.43)

    Tertiary medical institutions 9459.36 (6092.83, 14,781.79) 6823.405 (4286.33, 11,738.16)

GDP per capita (CNY)
    2015 77,812 71,405

    2016 81,217 77,299

    2017 88,627 81,689
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differences in the results. For example, the rural areas of 
Italy and Guangxi were both characterized by low-level 
 NO2 exposure, whereas the  NO2 concentrations in the 
rural and urban areas of Shandong, Beijing, and Jiangsu 
were very similar.

However, a more pronounced displacement phenom-
enon was found in rural areas. The displacement phe-
nomenon, referring to an increased risk ratio at short 
lags followed by an apparently protective effect at longer 
lags. This suggests that highly vulnerable people who 
are admitted to the hospital due to CVD may have sim-
ply had their problem brought forward by a few days as 
a result of  NO2 exposure. Rural residents tended to have 
poorer overall health condition with lower health aware-
ness compared to their urban counterparts, thus the dis-
placement phenomenon might be greater among rural 
residents. This phenomenon has been observed for air 
pollution and temperature-related deaths [35, 45].

Urban–rural differences in the economic burden attributed 
to  NO2 exposure
Despite similar effect sizes, hospital days and expenses 
resulting from  NO2 exposure in urban areas were almost 
twice as high as those in rural areas. This fact may dem-
onstrate that social inequality and environmental justice 
may be interrelated. First high-quality medical resources 
are mainly distributed in urban areas. Rural residents 
have limited access to high-quality health care com-
pared to urban residents and tend to receive health care 
in primary and secondary medical institutions. Corre-
spondingly, expenses are generally lower for primary and 
secondary medical institutions than for tertiary institu-
tions. In addition, a low socioeconomic status constrains 
rural residents’ health investments. To avoid catastrophic 

medical expenditures, rural residents may reduce hos-
pital days and expenses [53]. Of course, our study could 
not clarify the potential explanation. Thus, additional 
research is warranted to better understand precisely 
how these differences may contribute to health dispari-
ties between urban and rural areas. However, based on 
our results, urban–rural disparities in the effects of  NO2 
exposure are a social problem in addition to environmen-
tal justice.

Contributions and limitations
Based on the effects of short-term  NO2 exposure on 
CVD hospitalization, this study also included the urban–
rural disparities in the economic burden attributed to 
 NO2 exposure. Many studies have evaluated the range 
of economic burdens associated with health problems 
caused by air pollution and made specific estimates 
[54–59]. Nevertheless, to our knowledge, no studies have 
compared these estimates between urban and rural areas. 
In addition, this study linked urban–rural disparities in 
environmental health with social inequality, which may 
enhance our understanding of the urban–rural dispari-
ties and the differences in previous studies. Our findings 
can help to provide justification for a coordinated inter-
vention system that targets environmental factors and 
socioeconomic inequality simultaneously.

However, our study has several limitations. First, expo-
sure misclassification could have occurred in our time series 
study design. Specifically, (i) county-level daily ambient air 
pollution could not exactly reflect personal exposure, and (ii) 
due to limited available data, we could not identify the diver-
gence resulting from indoor-outdoor exposure. Since rural 
residents are more likely to be exposed to indoor  NO2, the 
effect size of ambient  NO2 exposure may be overestimated 
in rural areas, and urban-rural disparities in the effects of 

Fig. 3 Kaplan–Meier survival curve of CVD between urban and rural residents
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ambient  NO2 exposure may be underestimated. However, 
disparities in the economic burden may remain. Second, the 
study area covered only Shandong Province, China. However, 
from east to west in Shandong Province, the environmental 
and sociodemographic characteristics are similar to those in 
China as a whole. Data spanning a wide range of economies 
and environments provide a good sample for analyzing the 
association. Third, our study sample was selected separately 
from urban community populations in municipal districts 
and rural villagers in rural counties to better compare typi-
cal rural–urban differences; however, this may have led to an 
overestimation of urban–rural disparities. Finally, our study 
was a time series observational study and could not control 
for sufficient variables; thus, this study could not explain the 
pathways of this phenomenon. However, we stratified our 
sample according to age and employed meta-regression mod-
els with the inclusion of access to health services and GDP to 
capture more factors influencing CVD risks. Due to the above 
limitations, our results should be interpreted with caution.

Policy implications
Our investigation can provide guidance for the crea-
tion and implementation of prevention and intervention 
programs to mitigate the negative effects of short-term 
 NO2 exposure. We need to attach importance to the 
early warning of  NO2 pollution in the cardiovascular sys-
tem.  NO2 pollution in rural areas, which has often been 
neglected in the past, should receive special attention. 
In addition, a coordinated environmental health policy 
linking environmental and social factors with health is 
highly recommended to reduce the interaction between 
environmental inequities and social inequality. Mitiga-
tion and adaptation such as enhancing equity in access 
to health services and socioeconomic status, should be 
implemented in an integrated way. Finally, considering 
that dozens of counties meet the 2005 AQG standard 
but continue to be affected by  NO2 exposure in terms of 
health, the WHO 2021 AQG should be widely adopted, 
and the guidelines should be dynamically adjusted.

Conclusion
Based on data on 303,217 hospital admissions for CVD 
in Shandong Province, China, this study applied a dis-
tributed lag model and random effects meta-analyses 
to estimate the short-term association between  NO2 
exposure and hospitalization for CVD in both rural 
and urban areas. Afterward, urban–rural differences 
in the AN and AF attributed to  NO2 were compared to 
reveal urban–rural disparities in the economic burden 
of CVD attributed to  NO2 exposure. This study found a 
positive and significant association. Although the effect 
size was slightly higher in urban areas, the urban–rural 
difference was not significant. Nevertheless, a more 

pronounced displacement phenomenon was found in 
rural areas, and hospitalization expenses were signifi-
cantly higher in urban areas. Differences in access to 
high-quality health care and socioeconomic status may 
partly explain the urban–rural disparities in the eco-
nomic burden. Urban–rural disparities in the health 
implications of short-term  NO2 exposure are a social 
problem in addition to an environmental problem. 
Thus, we may need to pay special attention to these 
rural areas in terms of the health implications of  NO2 
exposure, and a coordinated environmental health pol-
icy linking environmental and social factors with health 
should be implemented. However, our results should be 
applied with caution because of potential measurement 
error of exposure assessment, and lack of risk factors.
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